
DSP System Toolbox™

Getting Started Guide

R2014b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

DSP System Toolbox™ Getting Started Guide
© COPYRIGHT 2011–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

April 2011 First printing Revised for Version 8.0 (R2011a)
September 2011 Online only Revised for Version 8.1 (R2011b)
March 2012 Online only Revised for Version 8.2 (R2012a)
September 2012 Online only Revised for Version 8.3 (R2012b)
March 2013 Online only Revised for Version 8.4 (R2013a)
September 2013 Online only Revised for Version 8.5 (R2013b)
March 2014 Online only Revised for Version 8.6 (R2014a)
October 2014 Online only Revised for Version 8.7 (R2014b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Introduction
1

DSP System Toolbox Product Description 1-2
Key Features . 1-2

Configure Simulink Environment for Signal Processing
Models . 1-3

Installation . 1-3
Required Products . 1-3
Related Products . 1-4

ARM Cortex-M and ARM Cortex-A Optimization 1-5

Configure the Simulink Environment for Signal Processing
Models . 1-6

Using dspstartup.m . 1-6
Settings in dspstartup.m . 1-7

Design a Filter with fdesign and filterbuilder
2

Filter Design Process Overview . 2-2

Design a Filter Using fdesign . 2-3

Design a Filter Using filterbuilder . 2-8

iv Contents

Design Filters in Simulink
3

Design and Implement a Filter . 3-2
Design a Digital Filter in Simulink . 3-2
Add a Digital Filter to Your Model . 3-6

Adaptive Filters . 3-10
Design an Adaptive Filter in Simulink 3-10
Add an Adaptive Filter to Your Model 3-15
View the Coefficients of Your Adaptive Filter 3-20

System Objects
4

What Is a System Toolbox? . 4-2

What Are System Objects? . 4-3

System Objects vs. MATLAB Functions 4-5
System Objects vs. MATLAB Functions 4-5
Process Audio Data Using Only MATLAB Functions Code . . 4-5
Process Audio Data Using System Objects 4-6

System Design and Simulation in MATLAB 4-8

System Design and Simulation in Simulink 4-9

System Objects in MATLAB Code Generation 4-10
System Objects in Generated Code 4-10
System Objects in codegen . 4-15
System Objects in the MATLAB Function Block 4-15
System Objects in the MATLAB System Block 4-15
System Objects and MATLAB Compiler Software 4-16

System Objects in Simulink . 4-17
System Objects in the MATLAB Function Block 4-17
System Objects in the MATLAB System Block 4-17

v

System Object Methods . 4-18
What Are System Object Methods? 4-18
The Step Method . 4-18
Common Methods . 4-19

System Design in MATLAB Using System Objects 4-21
Create Components for Your System 4-21
Configure Components for Your System 4-22
Assemble Components to Create Your System 4-23
Run Your System . 4-24
Reconfigure Your System During Runtime 4-25

System Design in Simulink Using System Objects 4-27
Define New Kinds of System Objects for Use in Simulink . . 4-27
Test New System Objects in MATLAB 4-32
Add System Objects to Your Simulink Model 4-33

vi

1

Introduction

• “DSP System Toolbox Product Description” on page 1-2
• “Configure Simulink Environment for Signal Processing Models” on page 1-3
• “ARM Cortex-M and ARM Cortex-A Optimization” on page 1-5
• “Configure the Simulink Environment for Signal Processing Models” on page 1-6

1 Introduction

1-2

DSP System Toolbox Product Description
Design and simulate signal processing systems

DSP System Toolbox™ provides algorithms for designing and simulating signal
processing systems. These capabilities are provided as MATLAB® functions, MATLAB
System objects, and Simulink® blocks. The system toolbox includes design methods for
specialized FIR and IIR filters, FFTs, multirate processing, and DSP techniques for
processing streaming data and creating real-time prototypes. You can design adaptive
and multirate filters, implement filters using computationally efficient architectures,
and simulate floating-point digital filters. Tools for signal I/O from files and devices,
signal generation, spectral analysis, and interactive visualization enable you to analyze
system behavior and performance. For rapid prototyping and embedded system design,
the system toolbox supports fixed-point arithmetic and C or HDL code generation.

Key Features

• Algorithms available as MATLAB System objects and Simulink blocks
• Simulation of streaming, frame-based, and multirate systems
• Signal generators and I/O support for multimedia files and devices, including ASIO™

drivers and multichannel audio
• Design methods for specialized filters, including parametric equalizers and adaptive,

multirate, octave, and acoustic weighting filters
• Filter realization architectures, including second-order sections and lattice wave

digital filters
• Signal measurements for peak-to-peak, peak-to-RMS, state-level estimation, and

bilevel waveform metrics
• FFT, spectral estimation, windowing, signal statistics, and linear algebra
• Algorithm support for floating-point, integer, and fixed-point data types
• Support for fixed-point modeling and C and HDL code generation

 Configure Simulink Environment for Signal Processing Models

1-3

Configure Simulink Environment for Signal Processing Models

In this section...

“Installation” on page 1-3
“Required Products” on page 1-3
“Related Products” on page 1-4

Installation

Before you begin working, you need to install the product on your computer.

Installing the DSP System Toolbox Software

The DSP System Toolbox software follows the same installation procedure as the
MATLAB toolboxes.

Installing Online Documentation

Installing the documentation is part of the installation process:

• Installation from a DVD — Start the MathWorks® installer. When prompted, select
the Product check boxes for the products you want to install. The documentation is
installed along with the products.

• Installation from a Web download — If you update the DSP System Toolbox software
using a Web download and you want to view the documentation with the MATLAB
Help browser, you must install the documentation on your hard drive.

Download the files from the Web. Then, start the installer, and select the Product
check boxes for the products you want to install. The documentation is installed along
with the products.

Required Products

The DSP System Toolbox product is part of a family of MathWorks products. You need
to install several products to use the toolbox. For more information about the required
products, see the MathWorks Web site, at http://www.mathworks.com/products/
dsp-system/requirements.html.

http://www.mathworks.com/products/dsp-system/requirements.html
http://www.mathworks.com/products/dsp-system/requirements.html

1 Introduction

1-4

Related Products

MathWorks provides several products that are relevant to the kinds of tasks you can
perform with DSP System Toolbox software.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system
• The MathWorks Web site, at http://www.mathworks.com/products/dsp-

system/related.html.

http://www.mathworks.com/products/dsp-system/related.html
http://www.mathworks.com/products/dsp-system/related.html

 ARM Cortex-M and ARM Cortex-A Optimization

1-5

ARM Cortex-M and ARM Cortex-A Optimization

The DSP System Toolbox supports optimized C code generation for popular algorithms
like FIR filtering and FFT on ARM® Cortex®-M and ARM Cortex-A processors.

You can generate C code that can be linked with the CMSIS library or calls the Ne10
library functions and compiled to provide optimized executables to run on ARM Cortex-M
or ARM Cortex-A processors.

To use the DSP System Toolbox support packages for ARM Cortex-M and ARM Cortex-A
processors, you must have the following products in addition to the DSP System Toolbox:
Simulink, Simulink Coder™ , Embedded Coder®, and MATLAB Coder.

To obtain more information and download the DSP System Toolbox support packages
for the ARM Cortex processors, see http://www.mathworks.com/hardware-support/
index.html.

http://www.mathworks.com/hardware-support/index.html
http://www.mathworks.com/hardware-support/index.html

1 Introduction

1-6

Configure the Simulink Environment for Signal Processing Models

In this section...

“Using dspstartup.m” on page 1-6
“Settings in dspstartup.m” on page 1-7

Using dspstartup.m

The DSP System Toolbox product provides a file, dspstartup.m, that lets you
automatically configure the Simulink environment for signal processing simulation. We
recommend these configuration parameters for models that contain DSP System Toolbox
blocks. Because these blocks calculate values directly rather than solving differential
equations, you must configure the Simulink solver to behave like a scheduler. The solver,
while in scheduler mode, uses a block sample time to determine when the code behind
each block executes. For example, if the sample time of a Sine Wave block is 0.05, the
solver executes the code behind this block and every other block with this sample time
once every 0.05 seconds.

Note: When working with models that contain DSP System Toolbox blocks, use source
blocks that allow you to specify a sample time. When your source block does not have a
Sample time parameter, you must add a Zero-Order Hold block in your model and use it
to specify the sample time. For more information, see “Continuous-Time Source Blocks”.
The exception to this rule is the Constant block, which can have a constant sample time.
When it does, Simulink executes this block and records the constant value once, which
allows for faster simulations and more compact generated code.

To use the dspstartup file to configure Simulink for signal processing simulations, you
can

• Type dspstartup at the MATLAB command line. All new models have settings
customized for signal processing applications. Existing models are not affected.

• Place a call to dspstartup within the startup.m file. This is an efficient way
to use dspstartup if you want these settings to be in effect every time you start
Simulink. For more information about performing automated tasks at startup, see the
documentation for the startup command in the MATLAB Function Reference.

The dspstartup file executes the following commands:

 Configure the Simulink Environment for Signal Processing Models

1-7

set_param(0, ...

 'SingleTaskRateTransMsg','error', ...

 'multiTaskRateTransMsg', 'error', ...

 'Solver', 'fixedstepdiscrete', ...

 'SolverMode', 'SingleTasking', ...

 'StartTime', '0.0', ...

 'StopTime', 'inf', ...

 'FixedStep', 'auto', ...

 'SaveTime', 'off', ...

 'SaveOutput', 'off', ...

 'AlgebraicLoopMsg', 'error', ...

 'SignalLogging', 'off');

You can edit the dspstartup file to change any of these settings or to add your own
custom settings. For complete information about these settings, see “Model Parameters”
in the Simulink documentation.

Settings in dspstartup.m

A number of the settings in the dspstartup file are chosen to improve the performance
of the simulation:

• 'Solver' is set to 'fixedstepdiscrete'.

This selects the fixed-step solver option instead of the Simulink default variable-step
solver. This mode enables code generation from the model using the Simulink Coder
product.

• 'Stop time' is set to 'Inf'.

The simulation runs until you manually stop it by selecting Stop from the
Simulation menu.

• 'SaveTime' is set to 'off'.

Simulink does not save the tout time-step vector to the workspace. The time-step
record is not usually needed for analyzing discrete-time simulations, and disabling it
saves a considerable amount of memory, especially when the simulation runs for an
extended time.

• 'SaveOutput' is set to 'off'.

Simulink Outport blocks in the top level of a model do not generate an output (yout)
in the workspace.

1-8

2

Design a Filter with fdesign and
filterbuilder

• “Filter Design Process Overview” on page 2-2
• “Design a Filter Using fdesign” on page 2-3
• “Design a Filter Using filterbuilder” on page 2-8

2 Design a Filter with fdesign and filterbuilder

2-2

Filter Design Process Overview

Note: You must have the Signal Processing Toolbox installed to use fdesign and
filterbuilder. Advanced capabilities are available if your installation additionally
includes the DSP System Toolbox license. You can verify the presence of both toolboxes
by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign approach.
This specification-centric approach places less emphasis on the choice of specific filter
algorithms, and more emphasis on performance during the design a good working filter.
For example, you can take a given set of design parameters for the filter, such as a
stopband frequency, a passband frequency, and a stopband attenuation, and— using
these parameters— design a specification object for the filter. You can then implement
the filter using this specification object. Using this approach, it is also possible to
compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter
• Implementation Object — Describes the designed filter; includes the array of

coefficients and the filter structure

The distinction between these two objects is at the core of the filter design methodology.
The basic attributes of each of these objects are outlined in the following table.

Specification Object Implementation Object

High-level specification Filter coefficients
Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select the code,
right-click the selection, and choose Evaluate Selection from the context menu), or you
can enter the code on the MATLAB command line. Before you begin this example, start
MATLAB and verify that you have installed the Signal Processing Toolbox software. If
you wish to access the full functionality of fdesign and filterbuilder, you should
additionally obtain the DSP System Toolbox software. You can verify the presence of
these products by typing ver at the command prompt.

 Design a Filter Using fdesign

2-3

Design a Filter Using fdesign

Use the following two steps to design a simple filter.

1 Create a filter specification object.
2 Design your filter.

Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter is defined
as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass filter has
the following specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB

F_stop1 = 8400; % Edge of the stopband = 8400 Hz

F_pass1 = 10800; % Edge of the passband = 10800 Hz

F_pass2 = 15600; % Closing edge of the passband = 15600 Hz

F_stop2 = 18000; % Edge of the second stopband = 18000 Hz

A_stop2 = 60; % Attenuation in the second stopband = 60 dB

A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the fdesign.bandpass
method as parameters.

Step 1

2 Design a Filter with fdesign and filterbuilder

2-4

To create a filter specification object, evaluate the following code at the MATLAB
prompt:

d = fdesign.bandpass

Now, pass the filter specifications that correspond to the default Specification
— fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds fs as the final input
argument to specify the sampling frequency of 48 kHz.

>> BandPassSpecObj = ...

 fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...

 F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...

 A_stop2, 48000)

Note: The order of the filter is not specified, allowing a degree of freedom for the
algorithm design in order to achieve the specification. The design will be a minimum
order design.

The specification parameters, such as Fstop1, are all given default values when
none are provided. You can change the values of the specification parameters after
the filter specification object has been created. For example, if there are two values
that need to be changed, Fpass2 and Fstop2, use the set command, which takes
the object first, and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains all the
required design parameters, including the filter type.

You may also change parameter values in filter specification objects by accessing
them as if they were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

Step 2
Design the filter by using the design command. You can access the design methods
available for you specification object by calling the designmethods function. For
example, in this case, you can execute the command

>> designmethods(BandPassSpecObj)

 Design a Filter Using fdesign

2-5

Design Methods for class

fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter

cheby1

cheby2

ellip

equiripple

kaiserwin

After choosing a design method use, you can evaluate the following at the MATLAB
prompt (this example assumes you've chosen 'equiripple'):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'

 Arithmetic: 'double'

 Numerator: [1x44 double]

 PersistentMemory: false

If you have the DSP System Toolbox installed, you can also design your filter with
a filter System object™. To create a filter System object with the same specification
object BandPassSpecObj, you can execute the commands

>> designmethods(BandPassSpecObj,...

'SystemObject',true)

Design Methods that support System objects for class

fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter

cheby1

cheby2

ellip

equiripple

kaiserwin

2 Design a Filter with fdesign and filterbuilder

2-6

>> BandPassFiltSysObj = design(BandPassSpecObj,...

'equiripple','SystemObject',true)

 System: dsp.FIRFilter

 Properties:

 Structure: 'Direct form'

 NumeratorSource: 'Property'

 Numerator: [1x44 double]

 InitialConditions: 0

 FrameBasedProcessing: true

 Show fixed-point properties

Available design methods and design options for filter System objects are not
necessarily the same as those for filter objects.

Note: If you do not specify a design method, a default method will be used. For
example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'

 Arithmetic: 'double'

 Numerator: [1x44 double]

 PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

If you have the DSP System Toolbox installed, the Filter Visualization tool produces
the following figure with the dashed red lines indicating the transition bands and
unity gain (0 in dB) over the passband.

 Design a Filter Using fdesign

2-7

2 Design a Filter with fdesign and filterbuilder

2-8

Design a Filter Using filterbuilder

Filterbuilder presents the option of designing a filter using a GUI dialog box as opposed
to the command line instructions. You can use Filterbuilder to design the same bandpass
filter designed in the previous section, “Design a Filter Using fdesign” on page 2-3

Design a Simple Filter in Filterbuilder

To design the filter using the Filterbuilder GUI:

1 Type the following at the MATLAB prompt:

filterbuilder

2 Select Bandpass filter response from the list in the dialog box, and hit the OK
button.

3 Enter the correct frequencies for Fpass2 and Fstop2, then click OK. Here the
specification uses normalized frequency, so that the passband and stopband edges
are expressed as a fraction of the Nyquist frequency (in this case, 48/2 kHz). The
following message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, you see the object Hbp has been placed on your
workspace.

4 To check your work, plot the filter magnitude response using the Filter Visualization
tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

 Design a Filter Using filterbuilder

2-9

Note that the dashed red lines on the preceding figure will only appear if you are
using the DSP System Toolbox software.

2-10

3

Design Filters in Simulink

• “Design and Implement a Filter” on page 3-2
• “Adaptive Filters” on page 3-10

3 Design Filters in Simulink

3-2

Design and Implement a Filter

In this section...

“Design a Digital Filter in Simulink” on page 3-2
“Add a Digital Filter to Your Model” on page 3-6

Design a Digital Filter in Simulink

You can design lowpass, highpass, bandpass, and bandstop filters using either the
Digital Filter Design block or the Filter Realization Wizard. These blocks are capable
of calculating filter coefficients for various filter structures. In this section, you use the
Digital Filter Design block to convert white noise to low frequency noise so you can
simulate its effect on your system.

As a practical application, suppose a pilot is speaking into a microphone within the
cockpit of an airplane. The noise of the wind passing over the fuselage is also reaching
the microphone. A sensor is measuring the noise of the wind on the outside of the plane.
You want to estimate the wind noise inside the cockpit and subtract it from the input
to the microphone so that only the pilot's voice is transmitted. In this chapter, you first
learn how to model the low frequency noise that is reaching the microphone. Later, you
learn how to remove this noise so that only the pilot's voice is heard.

In this topic, you use a Digital Filter Design block to create low frequency noise, which
models the wind noise inside the cockpit:

1 Open the model by typing

ex_gstut3

at the MATLAB command prompt. This model contains a Scope block that displays
the original sine wave and the sine wave with white noise added.

 Design and Implement a Filter

3-3

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 Convert white noise to low frequency noise by introducing a Digital Filter Design
block into your model. In the airplane scenario, the air passing over the fuselage
creates white noise that is measured by a sensor. The Random Source block models
this noise. The fuselage of the airplane converts this white noise to low frequency
noise, a type of colored noise, which is heard inside the cockpit. This noise contains
only certain frequencies and is more difficult to eliminate. In this example, you
model the low frequency noise using a Digital Filter Design block. This block uses
the functionality of the Filter Design and Analysis Tool (FDATool) to design a filter.

Double-click the Filtering library, and then double-click the Filter Implementations
sublibrary. Click-and-drag the Digital Filter Design block into your model.

3 Design Filters in Simulink

3-4

4 Set the Digital Filter Design block parameters to design a lowpass filter and create
low frequency noise. Open the block parameters dialog box by double-clicking the
block. Set the parameters as follows:

• Response Type = Lowpass
• Design Method = FIR and, from the list, choose Window
• Filter Order = Specify order and enter 31
• Scale Passband — Cleared
• Window = Hamming
• Units = Normalized (0 to 1)
• wc = 0.5

 Design and Implement a Filter

3-5

Based on these parameters, the Digital Filter Design block designs a lowpass FIR
filter with 32 coefficients and a cutoff frequency of 0.5. The block multiplies the time-
domain response of your filter by a 32 sample Hamming window.

5 Click Design Filter at the bottom center of the dialog box to view the magnitude
response of your filter in the Magnitude Response pane. The Digital Filter Design
dialog box should now look similar to the following figure.

You have now designed a digital lowpass filter using the Digital Filter Design block.

You can experiment with the Digital Filter Design block in order to design a filter of
your own. For more information on the block functionality, see the Digital Filter Design

3 Design Filters in Simulink

3-6

block reference page. For more information on the Filter Design and Analysis Tool, see
“FDATool” in the Signal Processing Toolbox documentation.

Add a Digital Filter to Your Model

In this topic, you add the lowpass filter you designed in “Design a Digital Filter in
Simulink” on page 3-2 to your block diagram. Use this filter, which converts white
noise to colored noise, to simulate the low frequency wind noise inside the cockpit:

1 If the model you created in “Design a Digital Filter in Simulink” on page 3-2 is
not open on your desktop, you can open an equivalent model by typing

ex_gstut4

at the MATLAB command prompt.

 Design and Implement a Filter

3-7

2 Incorporate the Digital Filter Design block into your block diagram by placing it
between the Random Source block and the Sum block.

3 Design Filters in Simulink

3-8

3 Run your model and view the results in the Scope window. This window shows the
original input signal and the signal with low frequency noise added to it.

 Design and Implement a Filter

3-9

You have now built a digital filter and used it to model the presence of colored noise
in your signal. This is analogous to modeling the low frequency noise reaching the
microphone in the cockpit of the aircraft. Now that you have added noise to your system,
you can experiment with methods to eliminate it.

3 Design Filters in Simulink

3-10

Adaptive Filters

In this section...

“Design an Adaptive Filter in Simulink” on page 3-10
“Add an Adaptive Filter to Your Model” on page 3-15
“View the Coefficients of Your Adaptive Filter” on page 3-20

Design an Adaptive Filter in Simulink

Adaptive filters track the dynamic nature of a system and allow you to eliminate time-
varying signals. The DSP System Toolbox libraries contain blocks that implement least-
mean-square (LMS), Block LMS, Fast Block LMS, and recursive least squares (RLS)
adaptive filter algorithms. These filters minimize the difference between the output
signal and the desired signal by altering their filter coefficients. Over time, the adaptive
filter's output signal more closely approximates the signal you want to reproduce.

In this topic, you design an LMS adaptive filter to remove the low frequency noise in your
signal:

1 If the model you created in “Add a Digital Filter to Your Model” on page 3-6 is not
open on your desktop, you can open an equivalent model by typing

ex_gstut5

at the MATLAB command prompt.

 Adaptive Filters

3-11

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 Remove the low frequency noise from your signal by adding an LMS Filter block
to your system. In the airplane scenario, this is equivalent to subtracting the wind
noise inside the cockpit from the input to the microphone. Double-click the Filtering
sublibrary, and then double-click the Adaptive Filters library. Add the LMS Filter
block into your model.

3 Design Filters in Simulink

3-12

4 Set the LMS Filter block parameters to model the output of the Digital Filter Design
block. Open its dialog box by double-clicking the block. Set the block parameters as
follows:

 Adaptive Filters

3-13

• Algorithm = Normalized LMS
• Filter length = 32
• Specify step size via = Dialog
• Step size (mu) = 0.1
• Leakage factor (0 to 1) = 1.0
• Initial value of filter weights = 0
• Clear the Adapt port check box.
• Reset port = None
• Select the Output filter weights check box.

The LMS Filter dialog box should now look like the following figure:

3 Design Filters in Simulink

3-14

 Adaptive Filters

3-15

5 Click Apply.

Based on these parameters, the LMS Filter block computes the filter weights using the
normalized LMS equations. The filter order you specified is the same as the filter order of
the Digital Filter Design block. The Step size (mu) parameter defines the granularity of
the filter update steps. Because you set the Leakage factor (0 to 1) parameter to 1.0,
the current filter coefficient values depend on the filter's initial conditions and all of the
previous input values. The initial value of the filter weights (coefficients) is zero. Since
you selected the Output filter weights check box, the Wts port appears on the block.
The block outputs the filter weights from this port.

Now that you have set the block parameters of the LMS Filter block, you can incorporate
this block into your block diagram.

Add an Adaptive Filter to Your Model

In this topic, you recover your original sinusoidal signal by incorporating the adaptive
filter you designed in “Design an Adaptive Filter in Simulink” on page 3-10 into your
system. In the aircraft scenario, the adaptive filter models the low frequency noise heard
inside the cockpit. As a result, you can remove the noise so that the pilot's voice is the
only input to the microphone:

1 If the model you created in “Design an Adaptive Filter in Simulink” on page 3-10
is not open on your desktop, you can open an equivalent model by typing

ex_gstut6

at the MATLAB command prompt.

3 Design Filters in Simulink

3-16

2 Add a Sum block to your model to subtract the output of the adaptive filter from the
sinusoidal signal with low frequency noise. From the Simulink Math Operations
library, drag a Sum block into your model. Open the Sum dialog box by double-
clicking this block. Change the List of signs parameter to |+- and then click OK.

3 Incorporate the LMS Filter block into your system.

a Connect the output of the Random Source block to the Input port of the LMS
Filter block. In the aircraft scenario, the random noise is the white noise
measured by the sensor on the outside of the airplane. The LMS Filter block
models the effect of the airplane's fuselage on the noise.

b Connect the output of the Digital Filter Design block to the Desired port on the
LMS Filter block. This is the signal you want the LMS block to reproduce.

c Connect the output of the LMS Filter block to the negative port of the Sum block
you added in step 2.

 Adaptive Filters

3-17

d Connect the output of the first Sum block to the positive port of the second Sum
block. Your model should now look similar to the following figure.

The positive input to the second Sum block is the sum of the input signal and the
low frequency noise, s(n) + y. The negative input to the second Sum block is the LMS
Filter block's best estimation of the low frequency noise, y'. When you subtract the
two signals, you are left with an approximation of the input signal.

s n s n y yapprox() () ’= + -

3 Design Filters in Simulink

3-18

In this equation:

• s(n) is the input signal
• s n approx() is the approximation of the input signal

• y is the noise created by the Random Source block and the Digital Filter Design
block

• y' is the LMS Filter block's approximation of the noise

Because the LMS Filter block can only approximate the noise, there is still a
difference between the input signal and the approximation of the input signal.
In subsequent steps, you set up the Scope block so you can compare the original
sinusoidal signal with its approximation.

4 Add two additional inputs and axes to the Scope block. Open the Scope dialog box by
double-clicking the Scope block. Click the Parameters button. For the Number of
axes parameter, enter 4. Close the dialog box by clicking OK.

5 Label the new Scope axes. In the Scope window, right-click on the third axes and
select Axes properties. The Scope properties: axis 3 dialog box opens. In the Title
box, enter Approximation of Input Signal. Close the dialog box by clicking
OK. Repeat this procedure for the fourth axes and label it Error.

6 Connect the output of the second Sum block to the third port of the Scope block.
7 Connect the output of the Error port on the LMS Filter block to the fourth port of the

Scope block. Your model should now look similar to the following figure.

 Adaptive Filters

3-19

In this example, the output of the Error port is the difference between the LMS filter's
desired signal and its output signal. Because the error is never zero, the filter continues
to modify the filter coefficients in order to better approximate the low frequency noise.
The better the approximation, the more low frequency noise that can be removed from
the sinusoidal signal. In the next topic, “View the Coefficients of Your Adaptive Filter”
on page 3-20, you learn how to view the coefficients of your adaptive filter as they
change with time.

3 Design Filters in Simulink

3-20

View the Coefficients of Your Adaptive Filter

The coefficients of an adaptive filter change with time in accordance with a chosen
algorithm. Once the algorithm optimizes the filter's performance, these filter coefficients
reach their steady-state values. You can view the variation of your coefficients, while
the simulation is running, to see them settle to their steady-state values. Then, you can
determine whether you can implement these values in your actual system:

1 If the model you created in “Add an Adaptive Filter to Your Model” on page 3-15
is not open on your desktop, you can open an equivalent model by typing

ex_gstut7

at the MATLAB command prompt. Note that the Wts port of the adaptive filter,
which outputs the filter weights, still needs to be connected.

 Adaptive Filters

3-21

2 Open the DSP System Toolbox library by typing dsplib at the MATLAB command
prompt.

3 View the filter coefficients using a Vector Scope block from the Sinks library.
4 Open the Vector Scope dialog box by double-clicking the block. Set the block

parameters as follows:

a Click the Scope Properties tab.

• Input domain = Time

3 Design Filters in Simulink

3-22

• Time display span (number of frames) = 1
b Click the Display Properties tab.

• Select the following check boxes:

• Show grid
• Frame number
• Compact display
• Open scope at start of simulation

c Click the Axis Properties tab.

• Minimum Y-limit = -0.2
• Maximum Y-limit = 0.6
• Y-axis label = Filter Weights

d Click the Line Properties tab.

• Line visibilities = on
• Line style = :
• Line markers =.
• Line colors = [0 0 1]

e Click OK.
5 Connect the Wts port of the LMS Filter block to the Vector Scope block.

 Adaptive Filters

3-23

6 Set the configuration parameters:

a Open the Configuration Parameters dialog box by selecting Model
Configuration Parameters from the Simulation menu, and navigate to the
Solver pane.

b Enter inf for the Stop time parameter.
c Choose Fixed-step from the Type list.
d Choose Discrete (no continuous states) from the Solver list.

3 Design Filters in Simulink

3-24

We recommend these configuration parameters for models that contain DSP System
Toolbox blocks. Because these blocks calculate values directly rather than solving
differential equations, you must configure the Simulink Solver to behave like a
scheduler. The Solver, while in scheduler mode, uses a block's sample time to
determine when the code behind each block is executed. For example, the sample
time of the Sine Wave and Random Source blocks in this model is 0.05. The Solver
executes the code behind these blocks, and every other block with this sample time,
once every 0.05 second.

Note: When working with models that contain DSP System Toolbox blocks, use
source blocks that enable you to specify their sample time. If your source block does
not have a Sample time parameter, you must add a Zero-Order Hold block in your
model and use it to specify the sample time. For more information, see “Continuous-
Time Source Blocks” in the DSP System Toolbox User's Guide. The exception to this
rule is the Constant block, which can have a constant sample time. When it does,
Simulink executes this block and records the constant value once, which allows for
faster simulations and more compact generated code.

7 Close the dialog box by clicking OK.
8 Open the Scope window by double-clicking the Scope block.
9 Run your model and view the behavior of your filter coefficients in the Vector Scope

window, which opens automatically when your simulation starts. Over time, you see
the filter coefficients change and approach their steady-state values, shown below.

 Adaptive Filters

3-25

You can simultaneously view the behavior of the system in the Scope window. Over
time, you see the error decrease and the approximation of the input signal more
closely match the original sinusoidal input signal.

3 Design Filters in Simulink

3-26

You have now created a model capable of adaptive noise cancellation. So far, you have
learned how to design a lowpass filter using the Digital Filter Design block. You also
learned how to create an adaptive filter using the LMS Filter block. The DSP System
Toolbox product has other blocks capable of designing and implementing digital and
adaptive filters. For more information on the filtering capabilities of this product, see
“Filter Design” and “Filter Analysis”.

Because all blocks in this model have the same sample time, this model is single rate
and Simulink ran it in SingleTasking solver mode. If the blocks in your model
have different sample times, your model is multirate and Simulink might run it in
MultiTasking solver mode. For more information on solver modes, see “Recommended
Settings for Discrete-Time Simulations” in the DSP System Toolbox User's Guide.

To learn how to generate code from your model using the Simulink Coder product, see
the “C Code Generation from Simulink” section.

4

System Objects

• “What Is a System Toolbox?” on page 4-2
• “What Are System Objects?” on page 4-3
• “System Objects vs. MATLAB Functions” on page 4-5
• “System Design and Simulation in MATLAB” on page 4-8
• “System Design and Simulation in Simulink” on page 4-9
• “System Objects in MATLAB Code Generation” on page 4-10
• “System Objects in Simulink” on page 4-17
• “System Object Methods” on page 4-18
• “System Design in MATLAB Using System Objects” on page 4-21
• “System Design in Simulink Using System Objects” on page 4-27

4 System Objects

4-2

What Is a System Toolbox?

System Toolbox products provide algorithms and tools for designing, simulating,
and deploying dynamic systems in MATLAB and Simulink. These toolboxes contain
MATLAB functions, System objects, and Simulink blocks that deliver the same design
and verification capabilities across MATLAB and Simulink, enabling more effective
collaboration among system designers. Available System Toolbox products include:

• DSP System Toolbox
• Communications System Toolbox
• Computer Vision System Toolbox
• Phased Array System Toolbox

System Toolboxes support floating-point and fixed-point streaming data simulation
for both sample- and frame-based data. They provide a programming environment for
defining and executing code for various aspects of a system, such as initialization and
reset. System Toolboxes also support code generation for a range of system development
tasks and workflows, such as:

• Rapid development of reusable IP and test benches
• Sharing of component libraries and systems models across teams
• Large system simulation
• C-code generation for embedded processors
• Finite wordlength effects modeling and optimization
• Ability to prototype and test on real-time hardware

 What Are System Objects?

4-3

What Are System Objects?

A System object is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer™ license)
• C code generation (requires a MATLAB Coder or Simulink Coder license)
• HDL code generation (requires an HDL Coder™ license)
• Executable files or shared libraries generation (requires a MATLAB Compiler™

license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

4 System Objects

4-4

In addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define New System Objects”.

 System Objects vs. MATLAB Functions

4-5

System Objects vs. MATLAB Functions

In this section...

“System Objects vs. MATLAB Functions” on page 4-5
“Process Audio Data Using Only MATLAB Functions Code” on page 4-5
“Process Audio Data Using System Objects” on page 4-6

System Objects vs. MATLAB Functions

Many System objects have MATLAB function counterparts. For simple, one-time
computations use MATLAB functions. However, if you need to design and simulate
a system with many components, use System objects. Using System objects is also
appropriate if your computations require managing internal states, have inputs that
change over time or process large streams of data.

Building a dynamic system with different execution phases and internal states using
only MATLAB functions would require complex programming. You would need code to
initialize the system, validate data, manage internal states, and reset and terminate
the system. System objects perform many of these managerial operations automatically
during execution. By combining System objects in a program with other MATLAB
functions, you can streamline your code and improve efficiency.

Process Audio Data Using Only MATLAB Functions Code

This example shows how to write MATLAB function-only code for reading audio data.

The code reads audio data from a file, filters it, and then plays the filtered audio data.
The audio data is read in frames. This code produces the same result as the System
objects code in the next example, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Obtain the total number of samples and the sampling rate from the source file.

audioInfo = audioinfo(fname);

maxSamples = audioInfo.TotalSamples;

fs = audioInfo.SampleRate;

4 System Objects

4-6

Define the filter to use.

b = fir1(160,.15);

Initialize the filter states.

z = zeros(1,numel(b)-1);

Define the amount of audio data to process at one time, and initialize the while loop
index.

frameSize = 1024;

nIdx = 1;

Define the while loop to process the audio data.

while nIdx <= maxSamples(1)-frameSize+1

 audio = audioread(fname,[nIdx nIdx+frameSize-1]);

 [y,z] = filter(b,1,audio,z);

 sound(y,fs);

 nIdx = nIdx+frameSize;

end

The loop uses explicit indexing and state management, which can be a tedious and error-
prone approach. You must have detailed knowledge of the states, such as, sizes and
data types. Another issue with this MATLAB-only code is that the sound function is not
designed to run in real time. The resulting audio is very choppy and barely audible.

Process Audio Data Using System Objects

This example shows how to write System objects code for reading audio data.

The code uses System objects from the DSP System Toolbox software to read audio data
from a file, filter it, and then play the filtered audio data. This code produces the same
result as the MATLAB code shown previously, allowing you to compare approaches.

Locate source audio file.

fname = 'speech_dft_8kHz.wav';

Define the System object to read the file.

audioIn = dsp.AudioFileReader(fname,'OutputDataType','single');

 System Objects vs. MATLAB Functions

4-7

Define the System object to filter the data.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Define the System object to play the filtered audio data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

Define the while loop to process the audio data.

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

This System objects code avoids the issues present in the MATLAB-only code. Without
requiring explicit indexing, the file reader object manages the data frame sizes while
the filter manages the states. The audio player object plays each audio frame as it is
processed.

4 System Objects

4-8

System Design and Simulation in MATLAB

System objects allow you to design and simulate your system in MATLAB. You use
System objects in MATLAB as shown in this diagram.

1 Create individual components — Create the System objects to use in your system.
See “Create Components for Your System” on page 4-21 for information. In
addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define New System Objects”.

2 Configure components — If necessary, change the objects’ property values to model
your particular system. All System object properties have default values that you
may be able to use without changing them. See “Configure Components for Your
System” on page 4-22 for information.

3 Assemble components into system — Write a MATLAB program that includes those
System objects, connecting them using MATLAB variable as inputs and outputs to
simulate your system. See “Assemble Components to Create Your System” on page
4-23 for information.

4 Run the system — Run your program, which uses the step method to run your
system’s System objects. You can change tunable properties while your system is
running. See “Run Your System” on page 4-24 and “Reconfigure Your System
During Runtime” on page 4-25 for information.

 System Design and Simulation in Simulink

4-9

System Design and Simulation in Simulink

You can use System objects in your model to simulate in Simulink.

1 Create a System object to be used in your model. See “Define New Kinds of System
Objects for Use in Simulink” on page 4-27 for information.

2 Test your new System object in MATLAB. See “Test New System Objects in
MATLAB” on page 4-32

3 Add the System object to your model using the MATLAB System block. See “Add
System Objects to Your Simulink Model” on page 4-33 for information.

4 Add other Simulink blocks as needed and connect the blocks to construct your
system.

5 Run the system

4 System Objects

4-10

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 4-10
“System Objects in codegen” on page 4-15
“System Objects in the MATLAB Function Block” on page 4-15
“System Objects in the MATLAB System Block” on page 4-15
“System Objects and MATLAB Compiler Software” on page 4-16

System Objects in Generated Code

You can generate C/C++ code in MATLAB from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate efficient
and compact code for deployment in desktop and embedded systems and accelerate
fixed-point algorithms. You do not need the MATLAB Coder product to generate code in
Simulink.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects Code with Persistent Objects for Code Generation

This example shows how to use System objects to make MATLAB code suitable for code
generation. The example highlights key factors to consider, such as passing property
values and using extrinsic functions. It also shows that by using persistent objects, the
object states are maintained between calls.

function w = lmssystem(x, d)

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

% #codegen

 % Declare System objects as persistent

 persistent hlms;

 % Initialize persistent System objects only once.

 % Do this with 'if isempty(persistent variable).'

 % This condition will be false after the first time.

 System Objects in MATLAB Code Generation

4-11

 if isempty(hlms)

 % Create LMS adaptive filter used for system

 % identification. Pass property value arguments

 % as constructor arguments. Property values must

 % be constants during compile time.

 hlms = dsp.LMSFilter(11,'StepSize',0.01);

 end

 [~,~,w] = step(hlms,x,d); % Filter weights

end

This example shows how to compile the lmssystem function and produce a MEX file
with the same name in the current directory.

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

coefs = fir1(10,.25);

hfilt = dsp.FIRFilter('Numerator', coefs);

x = randn(1000,1); % Input signal

hSrc = dsp.SignalSource(x,100); % Use x as input-signal with

 % 100 samples per frame

% Generate code for lmssystem

codegen lmssystem -args {ones(100,1),ones(100,1)}

while ~isDone(hSrc)

 in = step(hSrc);

 d = step(hfilt,in) + 0.01*randn(100,1); % Desired signal

 w = lmssystem_mex(in,d); % Call generated mex file

 stem([coefs.',w]);

end

For another detailed code generation example, see “Generate Code for MATLAB Handle
Classes and System Objects” in the MATLAB Coder product documentation.

System Objects Code Without Persistent Objects for Code Generation

The following example, using System objects, does not use the persistent keyword
because calling a persistent object with different data types causes a data type mismatch
error. This example filters the input and then performs a discrete cosine transform on

4 System Objects

4-12

the filtered output. Each call to the FilterAndDCTLib function is independent and state
information is not retained between calls.

function [out] = FilterAndDCTLib(in)

 hFIR = dsp.FIRFilter('Numerator',fir1(10,0.5));

 DCT = dsp.DCT;

 % Run the objects to get the filtered spectrum

 firOut = hFIR.step(in);

 out = hDCT.step(firOut);

function [out1, out2] = CompareRealInt(in1)

 % Call the library function, FilterAndDCTLib, which can

 % generate code for multiple calls each with a different data type.

 % Convert input data from double to int16

 in2 = int16(in1);

 % Call the library function for both data types, double and int16

 out1 = FilterAndDCTLib(in1);

 out2 = FilterAndDCTLib(in2);

function RunDCTExample

 % Execute everything needed at the command line to run the example

 warnState = warning('off','SimulinkFixedPoint:util:fxpParameterUnderflow');

 % Create vector, length 256, of data containing noise and sinusoids

 dataLength = 256;

 sampleData = rand(dataLength,1) + 3*sin(2*pi*[1:dataLength]*.085)' ...

 + 2*cos(2*pi*[1:dataLength]*.02)';

 % Generate code and run generated file

 codegen CompareRealInt -args {sampleData}

 [out1,out2] = CompareRealInt_mex(sampleData);

 % Compare the the floating point results, in blue

 % with the int16 results, in red

 plot(out1,'b')

 hold on

 plot(out2,'r')

 hold off

 System Objects in MATLAB Code Generation

4-13

 warning(warnState.state,warnState.identifier);

end

Usage Rules and Limitations for System Objects in Generated MATLAB Code

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of nine inputs.
• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

4 System Objects

4-14

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties at
construction time or using dot notation during code generation.

• Objects cannot be used as default values for properties.
• In MATLAB simulations, default values are shared across all instances of an object.

Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• Do not use cell arrays.
• Global variables are not supported. To avoid syncing global variables between a MEX

file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• release

• reset

• set (for tunable properties)

 System Objects in MATLAB Code Generation

4-15

• step

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any
other elements. You can then compile a MEX file from your MATLAB code by using
the codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for
more information.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any MATLAB
language function in a Simulink model. This model can then generate embeddable
code. System objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function Block?” in the
Simulink documentation.

System Objects in the MATLAB System Block

Using the MATLAB System block, you can include in a Simulink model individual
System objects that you create with a class definition file . The model can then generate
embeddable code. For more information, see “What Is the MATLAB System Block?” in
the Simulink documentation.

4 System Objects

4-16

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

 System Objects in Simulink

4-17

System Objects in Simulink

In this section...

“System Objects in the MATLAB Function Block” on page 4-17
“System Objects in the MATLAB System Block” on page 4-17

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

System Objects in the MATLAB System Block

You can include individual System objects that you create with a class definition file
into Simulink using the MATLAB System block. This provides one way to add your
own algorithm blocks into your Simulink models. For information, see “System Object
Integration” in the Simulink documentation.

4 System Objects

4-18

System Object Methods

In this section...

“What Are System Object Methods?” on page 4-18
“The Step Method” on page 4-18
“Common Methods” on page 4-19

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the
step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 4-19.

 System Object Methods

4-19

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

reset Resets the internal states of the object to the initial values for
that object

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.

4 System Objects

4-20

Method Description

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

For a complete list of methods for writing new System objects, see “Summary List of
Methods for Defining New System Objects”.

 System Design in MATLAB Using System Objects

4-21

System Design in MATLAB Using System Objects

In this section...

“Create Components for Your System” on page 4-21
“Configure Components for Your System” on page 4-22
“Assemble Components to Create Your System” on page 4-23
“Run Your System” on page 4-24
“Reconfigure Your System During Runtime” on page 4-25

Create Components for Your System

This example shows how to create components for a system that processes a long stream
of audio data. The data is read from a file, filtered, and then played.

A System object is a component you can use to create your system in MATLAB. System
objects support fixed- or variable-size data. Variable-size data is data whose size can
change at run time. By contrast, fixed-size data is data whose size is known and locked at
initialization time, and therefore, cannot change at run time.

Many System objects are predefined in the software. You can also create your own
System objects (see “Define New System Objects”).

The particular predefined components you need are:

• dsp.AudioFileReader — Read the file of audio data
• dsp.FIRFilter — Filter the audio data
• dsp.AudioPlayer — Play the filtered audio data

First, you create the component objects, using default property settings:

audioIn = dsp.AudioFileReader;

filtLP = dsp.FIRFilter;

audioOut = dsp.AudioPlayer;

4 System Objects

4-22

Next, you configure each System object for your system. See “Configure Components for
Your System” on page 4-22. Alternately, if desired, you can “Create and Configure
Components at the Same Time” on page 4-23.

Configure Components for Your System

When to Configure Components

If you did not set an object's properties when you created it and do not want to use
default values, you must explicitly set those properties. Some properties allow you to
change their values while your system is running. See “Reconfigure Your System During
Runtime” on page 4-25 for information.

Most properties are independent of each other. However, some System object properties
enable or disable another property or limit the values of another property. To avoid
errors or warnings, you should set the controlling property before setting the dependent
property.

Display Component Property Values

To display the current property values for an object, type that object’s handle name at
the command line (such as audioIn). To display the value of a specific property, type
objecthandle.propertyname (such as audioIn.FileName).

Configure Component Property Values

This example shows how to configure the components for your system by setting the
component objects’ properties.

Use this procedure if you have created your components as described in “Create
Components for Your System” on page 4-21. If you have not yet created your
components, use the procedure in “Create and Configure Components at the Same Time”
on page 4-23

For the file reader object, specify the file to read and set the output data type.

audioIn.Filename = 'speech_dft_8kHz.wav';

audioIn.OutputDataType = 'single';

For the filter object, specify the filter numerator coefficients using the fir1 function,
which specifies the lowpass filter order and the cutoff frequency.

 System Design in MATLAB Using System Objects

4-23

filtLP.Numerator = fir1(160,.15);

For the audio player object, specify the sample rate. In this case, use the same sample
rate as the input data.

audioOut.SampleRate = audioIn.SampleRate;

Create and Configure Components at the Same Time

This example shows how to create your System object components and configure
the desired properties at the same time. To avoid errors or warnings for dependent
properties, you should set the controlling property before setting the dependent property.
Use this procedure if you have not already created your components.

Create the file reader object, specify the file to read, and set the output data type.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...

 'OutputDataType','single')

Create the filter object and specify the filter numerator using the fir1 function. Specify
the lowpass filter order and the cutoff frequency of the fir1 function.

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

Create the audio player object and specify the sample rate. In this case, use the same
sample rate as the input data.

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

After you create the components, you can assemble them in your system. See “Assemble
Components to Create Your System” on page 4-23.

Assemble Components to Create Your System

• “Connect Inputs and Outputs” on page 4-23
• “Code for the Whole System” on page 4-24

Connect Inputs and Outputs

After you have determined the components you need and have created and configured
your System objects, assemble your system. You use the System objects like other

4 System Objects

4-24

MATLAB variables and include them in MATLAB code. You can pass MATLAB variables
into and out of System objects.

The main difference between using System objects and using functions is the step
method. The step method is the processing command for each System object and is
customized for that specific System object. This method initializes your objects and
controls data flow and state management of your system. You typically use step within a
loop.

You use the output from an object’s step method as the input to another object’s step
method. For some System objects, you can use properties of those objects to change the
number of inputs or outputs. To verify that the appropriate number of input and outputs
are being used, you can use getNumInputs and getNumOutputs on any System object.
For information on all available System object methods, see “System Object Methods” on
page 4-18.

Code for the Whole System

This example shows how to write the full code for reading, filtering, and playing a file of
audio data.

You can type this code on the command line or put it into a program file.

audioIn = dsp.AudioFileReader('speech_dft_8kHz.wav',...

 'OutputDataType','single');

filtLP = dsp.FIRFilter('Numerator',fir1(160,.15));

audioOut = dsp.AudioPlayer('SampleRate',audioIn.SampleRate);

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

The while loop uses the isDone method to read through the entire file. The step method
is used on each object inside the loop.

Now, you are ready to run your system. See “Run Your System” on page 4-24.

Run Your System

• “How to Run Your System” on page 4-25
• “What You Cannot Change While Your System Is Running” on page 4-25

 System Design in MATLAB Using System Objects

4-25

How to Run Your System

Run your code either by typing directly at the command line or running a file containing
your program. When you run the code for your system, the step method instructs each
object to process data through that object.

What You Cannot Change While Your System Is Running

The first call to the step method initializes and then locks your object. When a System
object has started processing data, it is locked to prevent changes that would disrupt its
processing. Use the isLocked method to verify whether an object is locked. When the
object is locked, you cannot change:

• Number of inputs or outputs
• Data type of inputs or outputs
• Data type of any tunable property
• Dimensions of inputs or tunable properties, except for System objects that support

variable-size data
• Value of any nontunable property

To make changes to your system while it is running, see “Reconfigure Your System
During Runtime” on page 4-25.

Reconfigure Your System During Runtime

• “When Can You Change Component Properties?” on page 4-25
• “Change a Tunable Property in Your System” on page 4-26
• “Change Input Complexity or Dimensions” on page 4-26

When Can You Change Component Properties?

When a System object has started processing data, it is locked to prevent changes that
would disrupt its processing. You can use isLocked on any System object to verify
whether it is locked or not. When processing is complete, you can use the release
method to unlock a System object.

Some object properties are tunable, which enables you to change them even if the object
is locked. Unless otherwise specified, System objects properties are nontunable. Refer
to the object’s reference page to determine whether an individual property is tunable.
Typically, tunable properties are not critical to how the System object processes data.

4 System Objects

4-26

Change a Tunable Property in Your System

This example shows how to change a tunable property.

You can change the filter type to a high-pass filter as your code is running by replacing
the while loop with the following while loop. The change takes effect the next time the
step method is called (such as at the next iteration of the while loop).

reset(audioIn); % Reset audio file

filtLP.Numerator = fir1(160,0.15,'high');

while ~isDone(audioIn)

 audio = step(audioIn); % Read audio source file

 y = step(filtLP,audio); % Filter the data

 step(audioOut,y); % Play the filtered data

end

Change Input Complexity or Dimensions

During simulation, some System objects do not allow complex data if the object was
initialized with real data. You cannot change any input complexity during code
generation.

You can change the value of a tunable property without a warning or error being
produced. For all other changes at run time, an error occurs.

 System Design in Simulink Using System Objects

4-27

System Design in Simulink Using System Objects
In this section...

“Define New Kinds of System Objects for Use in Simulink” on page 4-27
“Test New System Objects in MATLAB” on page 4-32
“Add System Objects to Your Simulink Model” on page 4-33

Define New Kinds of System Objects for Use in Simulink

• “Define System Object with Block Customizations” on page 4-27
• “Define System Object with Nondirect Feedthrough” on page 4-30

A System object is a component you can use to create your system in MATLAB. You can
write the code in MATLAB and use that code to create a block in Simulink. To define
your own System object, you write a class definition file, which is a text-based MATLAB
file that contains the code defining your object. See “System Object Integration” in the
Simulink documentation.

Define System Object with Block Customizations

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and is
similar to the System Identification Using MATLAB System Blocks Simulink example.

This example shows how to create a class definition text file to define your System
object. The code in this example creates a least mean squares (LMS) filter and includes
customizations to the block icon and dialog appearance.

Note: Instead of manually creating your class definition file, you can use the New >
System Object > Simulink Extension menu option to open a template. This template
includes customizations of the System object for use in the Simulink MATLAB System
block. You edit the template file, using it as guideline, to create your own System object.

On the first line of the class definition file, specify the name of your System object and
subclass from both matlab.System and matlab.system.mixin.CustomIcon. The
matlab.System base class enables you to use all the basic System object methods and
specify the block input and output names, title, and property groups. The CustomIcon
mixin class enables the method that lets you specify the block icon.

4 System Objects

4-28

Add the appropriate basic System object methods to set up, reset, set the number of
inputs and outputs, and run your algorithm. See the reference pages for each method and
the full class definition file below for the implementation of each of these methods.

• Use the setupImpl method to perform one-time calculations and initialize variables.
• Use the stepImpl method to implement the block’s algorithm.
• Use the resetImpl to reset the state properties or DiscreteState properties.
• Use the getNumInputsImpl and getNumOutputsImpl methods to specify the

number of inputs and outputs, respectively.

Add the appropriate CustomIcon methods to define the appearance of the MATLAB
System block in Simulink. See the reference pages for each method and the full class
definition file below for the implementation of each of these methods.

• Use the getHeaderImpl method to specify the title and description to display on the
block dialog.

• Use the getPropertyGroupsImpl method to specify groups of properties to display
on the block dialog.

• Use the getIconImpl method to specify the text to display on the block icon.
• Use the getInputNamesImpl and getOutputNamesImpl methods to specify the

labels to display for the block input and output ports.

The full class definition file for the least mean squares filter is:

classdef lmsSysObj < matlab.System &...

 matlab.system.mixin.CustomIcon

 % lmsSysObj Least mean squares (LMS) adaptive filtering.

 % #codegen

 properties

 % Mu Step size

 Mu = 0.005;

 end

 properties (Nontunable)

 % Weights Filter weights

 Weights = 0;

 % N Number of filter weights

 N = 32;

 end

 properties (DiscreteState)

 System Design in Simulink Using System Objects

4-29

 X;

 H;

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 function [y, e_norm] = stepImpl(obj,d,u)

 tmp = obj.X(1:obj.N-1);

 obj.X(2:obj.N,1) = tmp;

 obj.X(1,1) = u;

 y = obj.X'*obj.H;

 e = d-y;

 obj.H = obj.H + obj.Mu*e*obj.X;

 e_norm = norm(obj.Weights'-obj.H);

 end

 function resetImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 end

 % Block icon and dialog customizations

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header(...

 'lmsSysObj', ...

 'Title', 'LMS Adaptive Filter');

 end

 function groups = getPropertyGroupsImpl

 upperGroup = matlab.system.display.SectionGroup(...

 'Title','General',...

 'PropertyList',{'Mu'});

 lowerGroup = matlab.system.display.SectionGroup(...

 'Title','Coefficients', ...

 'PropertyList',{'Weights','N'});

4 System Objects

4-30

 groups = [upperGroup,lowerGroup];

 end

 end

 methods (Access = protected)

 function icon = getIconImpl(~)

 icon = sprintf('LMS Adaptive\nFilter');

 end

 function [in1name, in2name] = getInputNamesImpl(~)

 in1name = 'Desired';

 in2name = 'Actual';

 end

 function [out1name, out2name] = getOutputNamesImpl(~)

 out1name = 'Output';

 out2name = 'EstError';

 end

 end

end

Define System Object with Nondirect Feedthrough

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and is
similar to the System Identification Using MATLAB System Blocks Simulink example.

This example shows how to create a class definition text file to define your System object.
The code in this example creates an integer delay and includes customizations to the
block icon. It implements a System object that you can use for nondirect feedthrough.
See“Use System Objects in Feedback Loops” for more information.

On the first line of the class definition file, subclass from matlab.System,
matlab.system.mixin.CustomIcon, and matlab.system.mixin.Nondirect. The
matlab.System base class enables you to use all the basic System object methods and
specify the block input and output names, title, and property groups. The CustomIcon
mixin class enables the method that lets you specify the block icon. The Nondirect
mixin enables the methods that let you specify how the block is updated and what it
outputs.

Add the appropriate basic System object methods to set up and reset the object and set
and validate the properties. Since this object supports nondirect feedthrough, you do not
implement the stepImpl method. You implement the updateImpl and outputImpl
methods instead. See the reference pages for each method and the full class definition file
below for the implementation of each of these methods.

 System Design in Simulink Using System Objects

4-31

• Use the setupImpl method to initialize some of the object’s properties.
• Use the resetImpl to reset the property states.
• Use the validatePropertiesImpl to check that the property values are valid.

Add the following Nondirect mixin class methods instead of the stepImpl method to
specify how the block updates its state and its output. See the reference pages and the
full class definition file below for the implementation of each of these methods.

• Use the outputImpl method to implement code to calculate the block output.
• Use the updateImpl method to implement code to update the block’s internal states.
• Use the isInputDirectFeedthroughImpl to specify that the block is not direct

feedthrough. Its inputs do not directly affect its outputs.

Add the getIconImpl method to define the block icon when it is used in Simulink via
the MATLAB System block. See the reference page and the full class definition file below
for the implementation of this method.

The full class definition file for the delay is:

classdef intDelaySysObj < matlab.System &...

 matlab.system.mixin.Nondirect &...

 matlab.system.mixin.CustomIcon

 % intDelaySysObj Delay input by specified number of samples.

 % #codegen

 properties

 % InitialOutput Initial output

 InitialOutput = 0;

 end

 properties (Nontunable)

 % NumDelays Number of delays

 NumDelays = 1;

 end

 properties (DiscreteState)

 PreviousInput;

 end

 methods (Access = protected)

 function setupImpl(obj, ~)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

4 System Objects

4-32

 end

 function [y] = outputImpl(obj, ~)

 % Output does not directly depend on input

 y = obj.PreviousInput(end);

 end

 function updateImpl(obj, u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

 function validatePropertiesImpl(obj)

 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))

 error('Number of delays must be positive non-zero scalar value.');

 end

 if (numel(obj.InitialOutput)>1)

 error('Initial output must be scalar value.');

 end

 end

 function resetImpl(obj)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function icon = getIconImpl(~)

 icon = sprintf('Integer\nDelay');

 end

 end

end

Test New System Objects in MATLAB

1 Create an instance of your new System object. For example, create an instance of the
lmsSysObj.

s = lmsSysObj;

2 Run the step method on the object multiple times with different inputs. This tests for
syntax errors and other possible issues before you add it to Simulink. For example,

desired = 0;

 System Design in Simulink Using System Objects

4-33

actual = 0.2;

step(s,desired,actual);

Add System Objects to Your Simulink Model

1 Add your System objects to your Simulink model by using the MATLAB System
block as described in “Mapping System Objects to Block Dialog Box”.

2 Add other Simulink blocks, connect them, and configure any needed parameters to
complete your model as described in the Simulink documentation. See the System
Identification for an FIR System Using MATLAB System Blocks Simulink example.

3 Run your model in the same way you run any Simulink model.

4-34

